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Although the number of artificial neural network and machine learning
architectures is growing at an exponential pace, more attention needs to
be paid to theoretical guarantees of asymptotic convergence for novel,
nonlinear, high-dimensional adaptive learning algorithms. When prop-
erly understood, such guarantees can guide the algorithm development
and evaluation process and provide theoretical validation for a particu-
lar algorithm design. For many decades, the machine learning commu-
nity has widely recognized the importance of stochastic approximation
theory as a powerful tool for identifying explicit convergence conditions
for adaptive learning machines. However, the verification of such con-
ditions is challenging for multidisciplinary researchers not working in
the area of stochastic approximation theory. For this reason, this letter
presents a new stochastic approximation theorem for both passive and re-
active learning environments with assumptions that are easily verifiable.
The theorem is widely applicable to the analysis and design of important
machine learning algorithms including deep learning algorithms with
multiple strict local minimizers, Monte Carlo expectation-maximization
algorithms, contrastive divergence learning in Markov fields, and policy
gradient reinforcement learning.

1 Overview

Although the number of artificial neural network and machine learning
architectures is growing at an exponential pace, more attention needs to
be paid to theoretical guarantees of asymptotic convergence for novel,
nonlinear, high-dimensional adaptive learning algorithms. When properly
understood, such guarantees can guide the algorithm development and
evaluation process and, in addition, provide theoretical validation for a
particular algorithm design. For many decades, the machine learning com-
munity has widely recognized the importance of stochastic approximation
theory as a powerful tool for identifying explicit convergence conditions for
adaptive learning machines. However, the verification of such conditions
is challenging for multidisciplinary researchers not working in the area of
stochastic approximation theory. For this reason, the goal of this letter is to
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present a new stochastic approximation theorem with easily verifiable as-
sumptions for characterizing the asymptotic behavior of a wide range of
important machine learning algorithms.

The new stochastic approximation theorem presented here is applica-
ble to the analysis of the asymptotic behavior of a wide range of learn-
ing algorithms including (1) deep learning algorithm (Bottou, 1991, 1998,
2004; Bengio, Courville, & Vincent, 2013; Sutskever, Marten, Dahl, & Hin-
ton, 2013; Zhang, Choromanska, & LeCun, 2015), (2) variable metric (Jani,
Dowling, Golden, & Wang, 2000; Paik, Golden, Torlak, & Dowling, 2006;
Roux, Manzagol, & Bengio, 2008; Schraudolph, Yu, & Günter, 2007; Sune-
hag, Trumpf, Vishwanathan, & Schraudolph, 2009) and momentum-type
stochastic approximation schemes (Pearlmutter, 1992; Roux, Schmidt, &
Bach, 2012; Sutskever et al., 2013; Zhang et al., 2015), (3) reinforcement
learning and adaptive control (Jaakkola, Jordan, & Singh, 1994; Baird &
Moore, 1999; Williams, 1992; Sugiyama, 2015; Sutton & Barto, 1998; Balcan
& Feldman, 2013; Mohri, Rostamizadeh, & Talwalkar, 2012), (4) expectation-
maximization problems for latent variable and missing data problems
(Carbonetto, King, & Hamze, 2009; Gu & Kong, 1998), and (5) contrastive
divergence learning in Markov random fields (Yuille, 2005; Hinton, Osin-
dero, & Teh, 2006; Tieleman, 2008; Swersky, Chen, Marlin, & de Freitas,
2010; Salakhutdinov & Hinton, 2012). A critical feature of the theorem is
that its statement and proof are specifically designed to provide relatively
easily verifiable assumptions and interpretable conclusions that can be un-
derstood and applied by researchers outside the field of stochastic approx-
imation theory.

Stochastic approximation theorems have played a vital role in charac-
terizing our understanding of adaptive learning algorithms from the very
beginning of work in machine learning (e.g., Amari, 1967; Duda & Hart,
1973). White (1989a, 1989b), Benveniste, Metivier, and Priouret (1990), Bot-
tou (1991), Bertsekas and Tsitsiklis (1996), Golden (1996), Borkar (2008),
Swersky et al. (2010), and Mohri et al. (2012) provide useful discussions
of the application of stochastic approximation methods to machine learn-
ing problems. Kushner (2010), a seminal contributor to the development of
stochastic approximation theory, provides an excellent review of the theo-
retical stochastic approximation literature from its origins in the 1950s.

The generic form of a stochastic approximation algorithm is defined
as follows. Consider a learning machine whose parameter values at iter-
ation t of the learning algorithm are interpretable as the realization of a
q-dimensional random vector θ̃(t). The learning machine is provided an ini-
tial guess for the parameter estimates at iteration t = 0, which is denoted as
θ̃(0). Then the learning machine observes a realization of a random vector
x̃(t) called the training stimulus x(t) which is then used to update the param-
eters of the learning machine.

In particular, the initial guess is then modified to obtain a revised param-
eter estimate at iteration t + 1, θ̃(t + 1) using the formula
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θ̃(t + 1) = θ̃(t) + γtd̃t, (1.1)

where the search direction is defined such that

d̃t ≡ dt (x̃(t), θ̃(t))

and the step-size or learning rate γt is a positive number.
In the initial stages of learning, the search time period, the step-size γt is

typically chosen to be either constant or to increase in value. During this
phase of the learning process, the adaptive learning machine’s dynamics
in equation 1.1 have the opportunity to sample the statistical environment.
Ideally, this time period should be sufficiently long so that there is an op-
portunity for the learning machine to observe the different types of training
stimuli in its environment for the purpose of extracting critical statistical
regularities. For example, if there are M distinct training stimuli that oc-
cur with approximately equal probability in the environment, then choos-
ing the time period for learning to be 10M would ensure that each training
stimulus will be approximately observed by the learning machine about 10
times during the initial search phase. After the initial search phase, the step-
size γt is decreased at an appropriate rate to ensure convergence. This latter
phase is called the converge time period.

Darken and Moody (1992) provide a good discussion of various types of
search and converge strategies. For example, choosing

γt = γo ((t/τ ) + 1)
(t/τ )2 + (t/τ ) + 1

, (1.2)

where γ0 is the initial positive step size and t < τ specifies the search time
period where the step size is relatively constant, while t � τ corresponds
to the “converge” time period where the step-size γt tends to decrease for
t = 0, 1, 2, . . . Alternatively, one might choose the sequence of step-sizes
γ1, γ2, . . . such that

γt = γo ((t/τ1) + 1)
(t/τ2)2 + 1

, (1.3)

so that the step-size sequence initially increases for t < τ1 during the search
phase and then decreases for t � τ2 > τ1 during the converge phase. Typi-
cally, the step size, γt , in equation 1.1 is a sequence of positive numbers that
is relatively constant or increases in the initial stages of learning and then
tends to decrease in the later stages of learning.

Different choices of the search direction vector d̃t in equation 1.1 real-
ize different popular stochastic descent algorithms such as stochastic gra-
dient descent (Bottou, 1991, 1998), normalized stochastic gradient descent
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(Hazan, Levy, & Shalev-Shwartz, 2015), modified Newton (Jani et al., 2000;
Paik et al., 2006; Roux et al., 2008; Schraudolph et al., 2007; Sunehag et al.,
2009), and momentum-type stochastic gradient descent methods (Pearl-
mutter, 1992; Roux et al., 2012; Sutskever et al., 2013; Zhang et al., 2015).
A standard assumption is that the dot product of the expected value of the
search direction d̃t with the gradient of the objective function is less than or
equal to zero.

Assume the stochastic sequence of d-dimensional random vectors
x̃(1), x̃(2), . . . modeling the training stimuli are independent and identi-
cally distributed with common data generating process (DGP) probability
density pe : Rd → [0,∞). In other words, each time the learning machine
updates its parameters, the likelihood of observing a particular training
stimulus x(t) at iteration t is given by pe. The goal of an adaptive learning
machine is to estimate (learn) the global minimizer, θ∗ ∈ Rq, of a smooth
risk function � : Rq → R, which specifies the learning machine’s optimal
behavior. In addition, let a smooth function c be defined such that c(x, θ)
is the penalty, or “loss,” incurred by the learning machine for choosing pa-
rameter value θ for training stimulus x where x ∈ Rd.

In order to define the risk function in a general manner, let the notation

∫
c(x, θ)pe(x)dν(x)

denote
∑

c(x, θ)pe(x) when pe is a probability mass function for a discrete
random vector and

∫
c(x, θ)pe(x)dx when pe is an (absolutely continuous)

probability density function for a continuous random vector. The nota-
tion

∫
c(x, θ)pe(x)dν(x) is also used to specify the appropriate combination

of sums and Riemann integrals for common situations where the random
training stimulus x̃ includes both discrete and absolutely continuous ran-
dom variables. Technically, pe is a Radon-Nikodým density defined with
respect to a sigma-finite measure ν, which additionally permits the repre-
sentation of mixed random variables. The sigma-finite measure ν explic-
itly specifies which random variables are discrete and which are absolutely
continuous. Mixed random variables that possess features of both abso-
lutely continuous and discrete random variables can also be specified by
the Radon-Nikodým density. For example, the setting of an analog volume
control is not ideally modeled as either a discrete or continuous random
variable since the probability that the volume control is set to the maxi-
mum value is positive, while the probability that the volume control is set
to a value less than the maximum value is zero.

With this notation, the passive environment risk function � is defined
such that for all θ ∈ Rq,

�(θ) =
∫

c(x, θ)pe(x)dν(x). (1.4)
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Thus, the goal of learning is to minimize the expected loss (or, equivalently,
risk) associated with choosing a parameter value with respect to a particular
statistical environment characterized by the DGP density pe.

Several prior publications in the machine learning literature (White,
1989a, 1989b; Bottou, 1991, 1998; Golden, 1996; Mohri et al., 2012; Toulis,
Rennie, & Airoldi, 2014) have provided explicit convergence theorems by
considering parameter update equations of the form of equation 1.1 and
assuming that the risk function has the form of equation 1.4. That is, at
each parameter update, the training stimulus is sampled from the statis-
tical environment using the probability density pe. This assumption, unfor-
tunately, is not directly relevant to many important problems in the areas
of (1) contrastive divergence learning (Yuille, 2005; Younes, 1999; Hinton
et al., 2006; Tieleman, 2008; Swersky et al., 2010; Salakhutdinov & Hinton,
2012); (2) learning in the presence of missing data or latent variables (Gu
& Kong, 1998; Carbonetto et al., 2009; Vlassis & Toussaint, 2009); and (3)
active learning and adaptive control (Jaakkola et al., 1994; Baird & Moore,
1999; Williams, 1992; Sugiyama, 2015; Sutton & Barto, 1998; Balcan & Feld-
man, 2013; Vlassis & Toussaint, 2009). Such problems typically require that
the training stimulus is sampled from a statistical environment specified by
the current parameter estimates so that rather than sampling from the den-
sity pe, one samples from the density pe(·|θ), where θ is the current knowl-
edge state of the learning machine. These latter problems can be viewed as
learning within a reactive learning environment.

Thus, rather than using the risk function in equation 1.4, the reactive
learning environment risk function is defined such that for all θ ∈ Rq,

�(θ) =
∫

c(x, θ)pe(x|θ)dν(x), (1.5)

where the stochastic descent algorithm specified in equation 1.1 is based on
the assumption that x̃(t) is sampled from a probability density function con-
ditioned on the current state of the learning machine θ(t). Thus, the learning
environment’s statistical characteristics are functionally dependent on the
current knowledge state of the learning machine. In practice, this depen-
dence is indirect since the environment is functionally dependent on the
learning machine’s behavior, which in turn is functionally dependent on
the current knowledge state of the learning machine.

Note that a stochastic gradient descent algorithm minimizing the risk
function in equation 1.5 can have quite a different functional form when
compared with a stochastic gradient descent algorithm minimizing the risk
function in equation 1.4. To see this, note the derivative of �(θ) in equation
1.4 for a passive statistical learning environment is specified by

∇θ�(θ) =
∫

∇θc(x, θ)pe(x)dν(x). (1.6)



2810 R. Golden

This formula for the gradient provided in equation 1.6 is not correct for a
reactive learning environment where the risk function is given by equation
1.5. The gradient of equation 1.5 for a reactive statistical learning environ-
ment is given instead by the formula

∇θ�(θ) =
∫

∇θc(x, θ)pe(x|θ)dν(x) +
∫

c(x, θ)∇θ pe(x|θ)dν(x). (1.7)

In the machine learning literature, most of the focus has been on in-
vestigating the rate of convergence of stochastic approximation algorithms
(Roux et al., 2012; Mohri et al., 2012). Analyses in the machine learning liter-
ature (Yuille, 2005; Sunehag et al., 2009; Mohri et al., 2012) include theorems
for handling reactive learning environments but do not explain in detail
how such theorems handle the case where the data generating process den-
sity pe is functionally dependent on θ and do not explicitly characterize the
asymptotic behavior of the state sequence {θ̃(t)}. In addition, such analy-
ses often lack a discussion regarding how a stochastic approximation con-
vergence theorem can be applied to situations where the objective function
has multiple minimizers, maximizers, and saddle points. However, Blum
(1954), Beneviste et al. (1990), Gu and Kong (1998), Kushner (1981), Younes
(1999), and Delyon, Lavielle, & Moulines (1999) have provided explicit as-
sumptions and proofs of convergence theorems for stochastic reactive learn-
ing environments, but the theorems and their assumptions may be difficult
to apply in practice for readers without a background in stochastic approx-
imation theory.

Clarity of understanding is important to ensure that such theorems can
be properly and confidently applied in practice since the algorithms they
describe are widely used in the field of machine learning. An important
contribution of this letter is providing a relatively simple set of assump-
tions and a straightforward detailed discussion intended to support the
mathematical analysis of a wide range of adaptive learning algorithms. Fur-
thermore, it is hoped that as a result of the analyses presented here, the
importance of prior contributions to the stochastic approximation theorem
literature will be better appreciated and this analysis will serve as a
stepping-stone to advanced study in this important area.

2 Overview of the New Convergence Theorem

The new stochastic approximation theorem that minimizes the reactive en-
vironment learning risk function in equation 1.5, as well as the passive
learning risk function in equation 1.4, is similar to analyses by Andrieu,
Moulines, and Priouret (2005), Blum (1954), Kushner (1981, theorem 1),
White (1989a, 1989b), Benveniste et al. (1990; appendix to part II), Bertsekas
and Tsitsiklis (1996, proposition 4.1, p. 141), Gu and Kong (1998), and De-
lyon et al. (1999, theorem 5). With respect to the machine learning literature,
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the theorem and its proof are most closely related to the analysis of Sune-
hag et al. (2009). However, the assumptions, conclusions, and proof of this
theorem are specifically designed to be easily understood by machine learn-
ing researchers working outside the field of stochastic approximation the-
ory. The accessibility of these theoretical results is fundamentally important
for the development of the field of machine learning to ensure that such
results are correctly applied in specific applications. In addition to having
conditions that are easily verifiable, the stochastic approximation theorem
introduced here is applicable to a wide range of situations commonly en-
countered in practical machine learning problems.

If the objective function is positive definite everywhere on the param-
eter space, the theorem provides conditions ensuring convergence to the
unique strict global minimum of the objective function. However, if the ob-
jective function has multiple minima, maxima, and saddle points, then the
new stochastic approximation theorem is still applicable. In this latter non-
convex optimization case, the theorem provides the weaker conclusion that
the sequence of algorithm-generated parameter estimates will converge to
the set of critical points with probability one or the algorithm will generate
a sequence of parameter estimates that are not bounded with probability
one.

Note the terminology that an event occurs “with probability one” means
there is a zero probability that the event will not occur. For example, if
the stochastic sequence θ̃(1), θ̃(2), . . . converges to some set H with prob-
ability one, this means that the probability of observing any realization
θ(1), θ(2), . . . that deterministically converges to H is exactly equal to one
and the probability of observing any realization that does not converge to
H is exactly equal to zero.

The theorem presented here assumes that the objective function is twice
continuously differentiable. Although many important machine learning
algorithms minimize objective functions that are not smooth, the points
of discontinuity in the gradients of such objective functions can often be
replaced with smooth transitions. For example, stochastic approximation
methods are often used to minimize the objective function for a multi-
layer perceptron with rectified linear or “rectilinear” units (Glorot, Bordes,
& Bengio, 2011; Zheng, Yang, Liu, Liang, & Li, 2015). Such an objective func-
tion is not continuously differentiable. Still, the theorem presented here is
still relevant to the analysis of learning in such situations if one replaces
the rectified linear units with softplus units (Glorot et al., 2011; Zheng
et al., 2015), which are smooth approximations to rectified linear units.
Note, in particular, that if one defines a more general form of the softplus
transfer function, S (φ) = τ log(1 + exp(φ/τ )), that for sufficiently large τ ,
the continuously differentiable softplus transfer function can approximate
the nondifferentiable rectifier transfer function, S (φ) = max{0, φ}, as accu-
rately as desired. Such situations are also typical in the context of impor-
tant applications in machine learning involving L1 regularization where the
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nondifferentiable function penalty function r(φ) = |φ| can be approximated
with arbitrary precision with the differentiable penalty function,

r(φ) = τ log(1 + exp(φ/τ )) + τ log(1 + exp(−φ/τ )),

for sufficiently large τ . For reactive learning environments when the objec-
tive function has the form of equation 1.5, the assumption that ∇� is contin-
uous places smoothness constraints not only on the loss function c but also
on the reactive data generating process specified by density px(·|θ).

The assumption of a sufficiently smooth objective function is required for
the analysis presented here for the purpose of showing that if ∇�(θ̃(t)) → 0
with probability one, then θ̃(t) converges to a critical point with probability
one. To see this, consider a simple squared-error type objective function � :
R → R with L1 regularization such as

�(θ ) ≡ (θ − M)2 + λ|θ |,

where λ is a positive number. If M 	= 0, then even though � is not differen-
tiable everywhere, it is still possible to show that ∇�(θ̃ (t)) → 0 with proba-
bility one since the gradient of � is defined in a neighborhood of a minimizer.
However, when M = 0, then ∇� = 2θ + λ for positive values of θ close to the
global minimizer θ∗ = 0 and ∇� = 2θ − λ for negative values of θ close to
the global minimizer θ∗ = 0. At the point θ∗ = 0 when M = 0, the gradient
of � is not defined. Thus, convergence of ∇�(θ̃ (1)),∇�(θ̃ (2)), . . . to zero can-
not be established in a straightforward manner. Moreover, to show further
that ∇�(θ̃ (1)),∇�(θ̃ (2)), . . . converges to zero with probability one implies
θ̃ (1), θ̃ (2), . . . converges to the set of critical points of � with probability one
typically requires that ∇� is continuous.

3 A Practical Convergence Analysis Recipe

In this section, a procedure for applying the new stochastic approximation
theorem is provided. Section 5 provides a formal statement and proof of the
theorem.

The assumption that a stochastic sequence x̃(1), x̃(2), . . . is bounded
means that there exists some finite number K such that |x̃(t)| ≤ K with prob-
ability one. Here, the random vector x̃(t) corresponds to an experiment that
generates a training stimulus vector x(t). If the random vector x̃(t) is a dis-
crete random vector restricted to take on a finite number of values (e.g., a
d-dimensional binary random vector x̃(t) ∈ {0, 1}d), then this is a sufficient
condition for the stochastic sequence to be bounded.

A sufficient condition for c(x̃, θ) to be called a twice continuously differ-
entiable random function is if c is a continuous function of x̃ and the second
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derivative of c, H, is a continuous function on the q-dimensional parameter
space 	.

The conclusion of the convergence theorem states that the stochastic se-
quence of parameter estimates θ̃(1), θ̃(2) either (1) is not confined to a closed,
bounded, and convex region, 	, of the parameter space with probability
one, or (2) converges to the set of critical points in 	 with probability one.
For example, if the stochastic sequence of parameter estimates θ̃(1), θ̃(2)
converges to a set of two critical points of � such that it oscillates between
these two points forever with probability one, then the stochastic sequence
of parameter estimates θ̃(1), θ̃(2) is said to converge to this set of two critical
points with probability one:

• Step 1: Identify the statistical environment. A reactive statistical environ-
ment is modeled as a sequence of bounded, independent, and iden-
tically distributed d-dimensional random vectors x̃(1), x̃(2), . . . with
common density pe(·|θ) where θ ∈ Rq. The density pe is not function-
ally dependent on θ for passive statistical environments.

• Step 2: Check � is twice continuously differentiable with a lower bound.
Since {x̃(t)} is assumed bounded and it will be assumed that {θ̃(t)} is
a bounded stochastic sequence, this assumption is satisfied provided
that c and pe are twice continuously differentiable random functions
and defined such that for all θ ∈ Rq:

�(θ) =
∫

c(x, θ)pe(x|θ)dν(x).

That is, �(θ) = E{c(x̃, θ)} where the expectation is taken with respect
to pe(x|θ). It is also assumed that � has a lower bound on Rq.

• Step 3: Define the region of convergence. Let 	 be a closed, bounded, and
convex subset of Rq.

• Step 4: Check the annealing schedule. Define a sequence of step sizes
γ1, γ2, . . . that satisfies equations 5.1 and 5.2. In the context of adaptive
learning, γt corresponds to the adaptive learning algorithm’s “learn-
ing rate.” For example, the step-size schedule

γt = γ0 (1 + (t/τ1))
1 + (t/τ2)2 ,

where 0 < τ1 < τ2 and positive γ0 generates a sequence γ1, γ2, . . . that
satisfies special constraints on the step-size sequence specified by
equations 5.1 and 5.2. This particular step-size schedule initially in-
creases the step size and then eventually decreases it. The constant τ1

should be chosen to be large enough that the learning algorithm ob-
serves a sufficiently rich sample of its statistical environment to sup-
port learning. The constant τ2 should be the same order of magnitude
as τ1. So, for example, if the learning machine observes M distinct
training stimuli with approximately equal probability and only one
training stimulus is observed per iteration, then τ1 might be chosen to
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be 10M so that each training stimulus is observed approximately 10
times during both the search and the converge phases of the learning
process.

• Step 5: Identify the search direction function. Let dt : Rd × Rq → Rq be
a piecewise continuous function on Rd × Rq for each t ∈ N. Rewrite
the learning rule for updating parameter estimates using the formula

θ̃(t + 1) = θ̃(t) + γtd̃t,

where the search direction random vector d̃t = dt (x̃(t), θ̃(t)), and {d̃t}
is a bounded stochastic sequence. A sufficient condition for {d̃t} to be
a bounded stochastic sequence is that there exists a piecewise contin-
uous function d : Rd × Rq → Rq on a finite partition of Rd × Rq such
that dt = d for all t ∈ N since {x̃(t)} and {θ̃(t)} are bounded stochastic
sequences by assumption.

• Step 6: Show the average search direction is downward. Assume there ex-
ists a series of functions d̄1, d̄2, . . . such that

d̄t (θ) ≡ E{dt (x̃(t), θ) |θ} =
∫

dt (x, θ) pe(x|θ)dν(x).

Show that there exists a positive number K such that

d̄t (θ)Tg(θ) ≤ −K|g(θ)|2. (3.1)

For example, choosing

dt (x, θ) = −
(

1
pe(x|θ)

)
d[c(x, θ)pe(x|θ)]

dθ

= −dc(x, θ)
dθ

− c(x, θ)
d log pe(x|θ)

dθ

yields the standard stochastic gradient descent direction

d̄t (θ) =
∫

dt (x, θ)pe(x|θ)dν(x) = −d�/dθ

so that d̄t(θ)Tg(θ) = −|g(θ)|2.
• Step 7: Investigate asymptotic behavior. Let H be the set of critical points

in 	. Conclude that with probability one either (1) the stochastic se-
quence does not remain in 	 for all t > T for some positive integer T,
or (2) θ̃(t) → H as t → ∞.

Consider the important special case where the Hessian of � is positive
definite on 	 even though � is multimodal. The region 	 can contain no crit-
ical points, exactly one critical point, or multiple critical points. If 	 contains
exactly one critical point in its interior, then that critical point is the unique
global minimizer of � on the interior of 	. The region 	 ⊆ Rq may also con-
tain one or more critical points of � on its boundary corresponding to saddle
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points or local maximizers of � on Rq. For example, suppose that a smooth
objective function � has a strict local minimum at the point θ = 0, a saddle
point at θ = 5, and a strict local maximum at the point θ = 10. The function
� is positive definite on the set 	1 = [−3,−1] but no critical points exist in
	1. The function � is positive definite on the set 	2 = [−3,+3] and has a
unique strict local minimizer at θ = 0. The function � is positive definite on
the set 	3 = [−3, 5] and has two critical points located at θ = 0 (strict local
minimizer) and θ = 5 (critical point on boundary of 	3).

4 Adaptive Learning Algorithm Applications

In this section, we discuss several examples of adaptive learning algorithms
that can be analyzed using the stochastic approximation theorem for reac-
tive environments presented in section 5.

4.1 Adaptive Learning in Passive Statistical Environments. In this sec-
tion, some adaptive learning strategies for passive statistical environments
are discussed. In such environments, the objective function is defined as
in equation 1.4. It should be noted, however, that these adaptive learning
strategies are applicable for reactive learning statistical environments as
well where the objective function is defined as in equation 1.5.

Assume the observations x̃(1), x̃(2), . . . are independent and identically
distributed with common density pe.

Let the notation

g̃k ≡
[

dc(x̃(k), θ̃(k))
dθ

]T

, (4.1)

where c is defined as in equation 1.4. A stochastic gradient descent (SGD)
method (e.g., Bottou, 1991, 1998) corresponds to selecting the search direc-
tion,

d̃k = −g̃k. (4.2)

The step-size γk is often chosen such that kγk converges to a constant number
as k → ∞ in order to ensure that both equations 5.1 and 5.2 hold.

In practice, one often uses a minibatch stochastic approximation algo-
rithm. Assume the kth minibatch X̃k is constructed such that

X̃k ≡ [x̃ ((k − 1)m + 1)) , . . . , x̃(km)]

so that the stochastic sequence of minibatches {X̃k} is also independent and
identically distributed.
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Then the adaptive learning update equation is given by

θ̃(k + 1) = θ̃(k) + γkd̃k, (4.3)

where the search direction

d̃k ≡ (1/m)
km∑

j=(k−1)m+1

dk(x̃( j), θ̃(k)).

A modified-Newton algorithm (Ollivier, 2015; Roux et al., 2008; Schrau-
dolph et al., 2007; Sunehag et al., 2009) is realized by the choice

d̃k = −Mkg̃k, (4.4)

where Mk is a positive-definite symmetric matrix chosen to approximate the
inverse of the Hessian of � evaluated at θ(k) when θ(k) is near a strict local
minimizer of �. Note that the Hessian of � in the neighborhood of a strict
local minimizer will have bounded strictly positive eigenvalues. This is an
important observation since this ensures that for the case where equation
4.4 holds, the expected downhill condition in equation 3.1 also holds. That
is,

d̄T
k g = −gTMkg ≤ −λmin|g|2,

where the positive number λmin is the smallest eigenvalue of Mk for all
k ∈ N.

For nonconvex functions when θ(k) is not near a strict local minimizer,
the smallest eigenvalue of Mk, λk, may be zero or negative. In such cases,
one can take a Levenberg-Marquardt type step,

d̃k = −Mkg̃k − μkg̃k,

where μk is a positive number chosen to be greater than the positive number
λmin or one can simply choose a standard gradient descent step d̃k = −g̃k.
This algorithm also ensures that d̄T

k g ≤ −λmin|g|2.
The above methodology can also be used to implement different stochas-

tic approximation variants of momentum, conjugate gradient, limited
memory Broyden-Fletcher-Goldfarb-Shanno descent algorithms (Shrau-
dolph et al., 2007; Jani et al., 2000; Paik et al., 2006), natural gradient de-
scent methods (Schraudolph et al., 2007), and normalized gradient methods
(Hazan et al., 2015).

Stochastic gradient descent with adaptive momentum (Pearlmutter,
1992; Roux et al., 2012; Sutskever et al., 2013; Zhang et al., 2015) is widely



Adaptive Learning Algorithm Convergence 2817

used in the field of machine learning and is closely related to conjugate-
gradient and other variable metric methods. Define the gradient descent
search direction with momentum for k = 1, 2, . . . as

d̃(k) = −g̃k + μ̃d̃(k − 1), (4.5)

where either (1) μ̃k = 0 yielding a gradient descent step or (2) μ̃k ∈ (0, 1)
yielding a momentum type step.

This type of algorithm can be realized within the proposed theoretical
framework as follows. Let

Mk = I − μ̃kd̃(k − 1)d̃(k − 1)T ,

where

μ̃k = μ

d̃(k − 1)T g̃k
,

where μ is a positive number. This implies that

d̃k = −Mkg̃k = −g̃k +
(

μ̃d̃(k − 1)d̃(k − 1)T

d̃(k − 1)T g̃k

)
g̃k,

which can then be rewritten in the form of equation 4.5 provided that
d̃(k − 1)T g̃k 	= 0.

In practice, one would set μ̃k = 0, yielding a gradient descent step in
situations where the magnitude of d̃(k − 1)T g̃k is less than some positive
number ε.

Also note that q − 1 eigenvalues of Mt are equal to 1, and the remaining
eigenvalue is 1 − μ̃k|d̃(k − 1)|2. Thus, to satisfy the conditions of the theo-
rem so that the smallest eigenvalue of Mt is greater than a positive number
λmin and the largest eigenvalue of Mt is less than a positive number λmax, it
is sufficient for

λmin < 1 − μ̃k|d̃(k − 1)|2 < λmax

or, equivalently, for the case where λmax = 1,

0 < μ̃k <
1 − λmin

|d̃(k − 1)|2 . (4.6)

In practice, one could check at each step of the algorithm if condition (4.6)
is satisfied. If condition (4.6) is not satisfied, one could set μ̃k = 0 to realize a
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gradient descent step. This would ensure that the sequence of real symmet-
ric matrices M1, M2, . . . is both positive definite and uniformly bounded
such that the eigenvalues of matrix Mt , {λt (1), . . . , λt (q)}, for any sequence
M1, M2, . . . satisfy the relation

0 < λmin ≤ λt (k) ≤ λmax

for all t ∈ N and for all k ∈ {1, . . . , q}.
A random block coordinate descent algorithm (Razaviyayn, Hong, Luo,

& Pang, 2014) can be realized within this proposed framework as well. Let
� denote the Hadamard product (element-by-element vector multiplica-
tion) operator. Let the set of q-dimensional binary vectors be denoted by
B ≡ {0, 1}q. Let mt ∈ B be a q-dimensional binary vector whose jth element
is a one if the jth element of the q-dimensional random vector θ(k) is up-
dated with information about training pattern s(t) at learning trial t.

In particular, assume that at learning trial t, the ordered pair

(st, mt ) ∈ Rd × B

is a realization of the mixed random vector

x̃t ≡ (s̃t, m̃t ),

whose Radon-Nikodým density is pe with respect to sigma-finite measure ν.
It is assumed that s̃t and m̃t are independent so that pe(s, m) = ps(s)pm(m).

Let the objective function for learning � : Rq → Rq be defined such that

�(θ) =
∫

c((s, m), θ)ps(s)pm(m)dν(s, m).

The search direction for random block coordinate gradient descent is de-
fined as

d̃t = f((s̃t, m̃t ), θ̃(t)),

where

f((s̃t, m̃t ), θ̃(t)) = −m̃t � g̃t, (4.7)

resulting in the random block coordinate descent adaptive learning rule:

θ̃(t + 1) = θ̃(t) − γtm̃t � g̃t .
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Let the expected frequency that a state vector element is updated be de-
fined as

m̄ =
∑
m∈B

m pm(m).

The expected value of d̄T g̃t is given by

d̄Tg = − (m̄ � g)T g ≤ −mmin|g|2,

where mmin is the smallest number in m̄. Thus, equation 5.4 holds provided
that the expected frequency of times that each element of the state vector is
updated is strictly positive (i.e., mmin > 0).

4.2 Normalization Constants and Contrastive Divergence. Maximum
likelihood estimation is a method for computing the parameter estimates
that maximize the likelihood of the observed data or, equivalently, mini-
mize the cross-entropy between the researcher’s model and the empirical
distribution of the observed data. For example, suppose that the observed
data are a collection of n d-dimensional vectors x1, . . . , xn, which are pre-
sumed to be a particular realization of a sequence of independent and iden-
tically distributed random vectors with common density pe : Rd → (0,∞)
with respect to sigma-finite measure ν. Then the method of maximum like-
lihood estimation corresponds to finding the parameter vector θ̂n that is a
global minimizer of

�n(θ) ≡ −(1/n)
n∑

i=1

log p(xi|θ) (4.8)

on 	. In addition, as n → ∞, θ̂n → θ∗ with probability one where θ∗ is a
particular global minimizer of

�(θ) = −
∫

pe(x) log p(x|θ)dν(x) (4.9)

under appropriate regularity conditions.
Let V : Rd × Rq → R. Let 	 be a closed and bounded subset of Rq. As-

sume for each θ ∈ 	 that the probability density of x̃ is a Gibbs density
p(·|θ) : Rd → (0,∞) defined such that

p(x|θ) = [Z(θ)]−1 exp(−V (x; θ)), (4.10)

where the normalization constant Z(θ) is defined as
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Z(θ) =
∫

exp(−V (y; θ))dν(y). (4.11)

The derivative of �n in equation 4.8 is given by the formula

d�n

dθ
= (1/n)

n∑
i=1

d�n,i

dθ
, (4.12)

where

d�n,i

dθ
= dV (xi, θ)

dθ
−

∫
dV (y; θ)

dθ
p(y|θ)dν(y). (4.13)

Equation 4.12 cannot, however, be immediately used to derive a stochas-
tic gradient descent algorithm that minimizes � for the following reasons.
The first term on the right-hand side of equation 4.13 is usually relatively
easy to evaluate. But the second term on the right-hand side of equation
4.13 is usually very difficult to evaluate because it involves a computation-
ally intractable multidimensional integration.

Let ỹ1, . . . , ỹm be a sequence of m possibly correlated distributed ran-
dom vectors with a common mean whose joint density is p(y1, . . . , ym|θ)
for a given θ. To obtain a computationally practical method of evaluating
the second term on the right-hand side of equation 4.13, note that the ex-
pected value of

(1/m)
m∑

j=1

dV (ỹ j; θ)
dθ

(4.14)

is

∫
dV (y; θ)

dθ
p(y|θ)dν(y), (4.15)

which corresponds to the second term on the right-hand side of equation
4.13.

Substitute the Monte Carlo approximation in equation 4.14 for the
multidimensional integral in equation 4.13 and then using the resulting ap-
proximate derivative as a stochastic search direction for a stochastic approx-
imation algorithm defined by

θ̃(k + 1) = θ̃(k) − γk
dV (x̃(k), θ̃(k))

dθ
+ (γk/m)

m∑
j=1

dV (ỹ j; θ̃(k))
dθ

, (4.16)
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where the minibatch ỹ1, . . . , ỹm is a collection of m possibly highly corre-
lated observations with joint density p(y1, . . . , ym|θ(k)) for the kth iteration
of equation 4.16. It is assumed that given θ̃(k) the mini-batches are indepen-
dent and identically distributed with common density p(y1, . . . , ym|θ(k)).
Equation 4.16 is an example of a contrastive divergence type of learning al-
gorithm, which can be interpreted as a stochastic approximation algorithm.
The minibatch size m can be a fixed integer (e.g., m = 3 or m = 100), or m can
be varied (e.g., initially m is chosen to be small and then gradually increased
to some finite positive integer during the learning process).

Note that the statistical environment used to generate the data for the
stochastic approximation algorithm in equation 4.16 is not a passive statis-
tical environment since the parameters of the learning machine are updated
at learning trial k not only by the observation x̃(k) but also by the observa-
tions ỹ1, . . . , ỹm whose joint distribution is functionally dependent on the
current parameter estimates θ(k). Thus, contrastive-divergence algorithms
of this type can be analyzed approximately using the theorem presented in
section 1.

4.3 Missing Data, Hidden Variables, and the EM Algorithm. In this
section, the problems of hidden variables and missing data are considered.
The presence of hidden variables is not only a characteristic feature of la-
tent variable models and deep learning architectures but can be considered
equivalent to the presence of data, which is always missing.

Assume that the data generating process generates a sequence of inde-
pendent and identically distributed random vectors,

(x̃1, m̃1), (x̃2, m̃2), . . .

where the d-dimensional random vector x̃k is called a complete-data random
vector and m̃k is a d-dimensional missing data indicator binary random vector
taking on values in {0, 1}d for all k ∈ N. The jth element of m̃k takes on the
value of one if and only if the jth element of x̃k is observable.

For convenience, the d-dimensional random vector x̃k is partitioned such
that x̃k = [ṽk, h̃k] where ṽk is the observable component of x̃k and h̃k is the
unobservable component whose probability distribution is functionally de-
pendent only on a realization of ṽk. The elements of ṽk correspond to the
visible random variables, while the elements of h̃k correspond to the hid-
den random variables or the missing data. Note that the dimensionalities
of ṽk and h̃k will typically vary as a function of the positive integer index
variable t.

The missing data negative log-likelihood analogous to the complete data
negative log likelihood in equation 4.8 is then defined by
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�n(θ) = −(1/n)
n∑

i=1

log p(vi|θ), (4.17)

which can be rewritten in terms of the joint density p(vi, hi|θ) as

�n(θ) = −(1/n)
n∑

i=1

log
[∫

p(vi, hi|θ)dν(hi)
]

. (4.18)

Now take the derivative of equation 4.17 under the assumption that the
interchange of derivative and integral operators is permissible to obtain

d�n

dθ
= (1/n)

n∑
i=1

d�i,n

dθ
, (4.19)

where

d�i,n

dθ
= −

∫
1

p(vi|θ)
dp(vi, hi|θ)

dθ
dν(hi). (4.20)

The derivative in the integrand of equation 4.20 is obtained using the iden-
tity (see Louis, 1982; McLachlan & Krishnan, 1996)

dp(vi, hi|θ)
dθ

= d log p(vi, hi|θ)
dθ

p(vi, hi|θ). (4.21)

Substitution of equation 4.21 into 4.20 gives

d�i,n

dθ
= −

∫
d log p(vi, hi|θ)

dθ
p(hi|vi, θ), dν(hi),

which is then approximated using a Monte Carlo approximation using the
formula

d�i,n

dθ
≈ −(1/m)

m∑
j=1

d log
[
p(vi, h j|θ)

]
dθ

, (4.22)

where the stochastic imputation h j is a realization of h̃ j whose distribution
is specified by the conditional density p(h|v, θ) for a given realization v and
parameter vector θ.

The final stochastic descent expectation-maximization algorithm is then
constructed by defining the stochastic search direction as a negative one
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multiplied by the derivative in equation 4.20 and then replacing the inte-
gral in it with the Monte Carlo approximation in equation 4.22 to yield the
stochastic gradient descent algorithm:

θ̃(k + 1) = θ̃(k) − (γk/m)
m∑

j=1

d log
[

p(ṽi, h̃ j|θ)
]

dθ
,

where the minibatch h̃1, . . . , h̃m at the kth learning trial is generated by first
sampling a realization vi from the environment and then sampling m times
from p(h|vi, θ(k)) using the sampled value vi and the current parameter esti-
mates θ(k) at the kth learning trial. Thus, the new stochastic approximation
theorem provides a method for analyzing the asymptotic behavior of the
stochastic descent expectation-maximization algorithm.

Note that m can be chosen equal to 1 or any positive integer. In the
case where m = ∞, the resulting algorithm approximates the deterministic
generalized expectation-maximization (GEM) algorithm (see McLachlan &
Krishnan, 1996, for a formal definition of a GEM algorithm) in which the
learning machine uses its current probabilistic model to compute the ex-
pected downhill search direction, takes a downhill step, updates its current
probabilistic model, and then repeats this process in an iterative manner.

4.4 Policy Gradient Reinforcement Learning. In this section, the
stochastic approximation theorem developed here is applied to the prob-
lem of investigating the convergence of a class of reinforcement learning
algorithms called policy gradient reinforcement learning machines (Williams,
1992; Sutton & Barto, 1998; Sugiyama, 2015). Suppose that a learning ma-
chine experiences a collection of episodes. The episodes ũ(0), ũ(1), . . . are
assumed to be independent and identically distributed. In addition, the kth
episode u(k) is defined such that u(k) ≡ [so(k), sF (k)] where so(k) is called the
initial state of episode u(k) and sF (k) is called the final state of episode u(k). The
probability density of ũk when the learning machine is embedded within a
passive statistical environment is specified by the density pe(u) = pe(so, sF )
where pe(u) specifies the likelihood that u is observed by the learning ma-
chine in its statistical environment.

On the other hand, for a reactive learning environment, the probability
that the learning machine selects action a j given the current state of the en-
vironment so and the learning machine’s current state of knowledge θ is ex-
pressed by the conditional probability mass function p(a j|so, θ), j = 1, . . . , J.
The statistical environment of the learning machine is characterized by the
probability density pe(so), specifying the likelihood of a given initial state of
an episode and the conditional density pe(sF |a j, so), which specifies the like-
lihood of a final state of an episode sF given the learning machine’s action
a j and the initial state of the episode so.
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Thus, the probability distribution of an episode ũ(k) is specified by the
density

pe(u|θ) = pe(so)p(sF |so, θ),

where

p(sF |so, θ) ≡
J∑

j=1

pe(sF |a j, so)p(a j|so, θ).

Let c(u; θ) specify the cost incurred by the learning machine when
episode u is encountered in its environment for a particular state of knowl-
edge θ. Notice that the cost c(u; θ) is functionally dependent on θ as well
as u, allowing for the possibility of a learning machine with an “adaptive
critic” (Sutton & Barton, 1998). One possible goal of an adaptive learning
machine in a reactive statistical environment is to minimize the objective
function � defined by the formula

�(θ) =
∫

c(u, θ)pe(u|θ)dν(u), (4.23)

where pe(·|θ) is a density for each θ ∈ Rq.
Now take the derivative of equation 4.23, interchange the integral and

derivative operators, and use a Monte Carlo approximation for the integral
in that equation similar to the approximations in equations 4.14 and 4.22. In
order to obtain the derivative of equation 4.23 in an appropriate form, the
identity

dpe(u|θ)
dθ

= pe(u|θ)
d log pe(u|θ)

dθ

is used (see Louis, 1982; McLachlan & Krishnan, 1996).
The resulting derivative can then be used to construct the stochastic gra-

dient descent algorithm, which works by updating the parameters of the
learning machine after each episode using the formula

θ̃(k + 1) = θ̃(k) − γk
dc(ũ(k), θ̃)

dθ
− γkc(u, θ̃(k))

d log pe(ũ(k)|θ̃(k))
dθ

.

(4.24)

Note that the probability distribution of ũ(k) at learning trial k is specified
by the conditional probability density pe(u(k)|θ(k)).
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5 Formal Convergence Analysis of Learning

In this section, the proof of the stochastic approximation theorem is pro-
vided, which minimizes the reactive environment risk function in equation
1.5 as well as the passive environment risk function in equation 1.4.

Although the specific theorem and proof presented here are novel, the
obtained results and method of proof are very similar to many existing
results in the literature. In particular, the statement and proof of the the-
orem follow a combination of arguments by Blum (1954), the appendix
of Benveniste et al. (1990), and Sunehag et al. (2009) using the the well-
known Robbins-Siegmund lemma (Robbins & Siegmund, 1971; see Ben-
veniste et al., 1990, appendix to part 2, or Douc, Moulines, & Stoffer, 2014,
lemma C2, for relevant reviews).

The results presented here are similar to those obtained by Andrieu et al.
(2005, theorem 2.3), Benveniste et al. (1990, appendix to part 2, pp. 344–
347), Bertsekas & Tsitsiklis (1996, proposition 4.1, p. 141), Douc et al. (2014,
theorem C.7), Kushner (1981, theorem 1), Kushner & Yin (1997, theorem 4.1),
Mohri et al (2012, theorems 14.7 and 14.8), White (1989a, 1989b, theorem
3.1).

The terminology that a function f : Rd × Rq → Rq is bounded means that
for all (x, θ) ∈ Rd × Rq, there exists a finite number K such that |f| ≤ K. The
terminology that a stochastic sequence x̃(0), x̃(1), . . . is bounded means that
there exists a finite number K such that for all t ∈ N: |x̃(t)| ≤ K with proba-
bility one where N ≡ {0, 1, 2, . . .}.

Let D ≡ {D1, . . . ,DM} be a finite partition of Rd. Let φ1, . . . , φM be a finite
set of functions defined such that φk(x) = 1 if x ∈ Dk and φk(x) = 0 if x 	∈ Dk.
Let fk : Rd → R be a continuous function, k = 1, . . . , M. The function f :
Rd → R defined such that for all x ∈ Rd,

f (x) =
M∑

k=1

fk(x)φk(x),

is called a piecewise continuous function on the finite partition D.
Let 	 be a convex, closed, and bounded subset of Rq. Let � : Rq → R be

a twice continuously differentiable function.
Let the gradient of � be denoted as g ≡ (∇�)T . Let the Hessian of � be

denoted as H ≡ ∇2�.

Theorem 1. Almost Supermartingale Lemma (Special Case). Let x̃1, x̃2, . . .

be a stochastic sequence. Let r̃1, r̃2, . . . be a stochastic sequence of nonnegative ran-
dom variables such that as T → ∞,

∑T
t=1 r̃t converges to a finite number with

probability one. Let φ : Rd → [0,∞) and V : Rd → [0,∞) be nonnegative piece-
wise continuous functions on finite partitions ofRd. Let q̃t ≡ φ(x̃t ) and ṽt ≡ V (x̃t )
for all t ∈ N. Assume, in addition, that for all t ∈ N,
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E{V (x̃t+1)|xt} ≤ V (xt ) − φ(xt ) + r̃t .

Then ṽt converges to a random variable with probability one as t → ∞, and there
exists a finite number K such that as T → ∞:

∑T
t=1 q̃t < K with probability one.

See Robbins and Siegmund (1971; also see Benveniste et al., 1990, p. 344,
or Douc et al., 2014, lemma C2) for the statement and proof of the almost
supermartingale lemma.

Theorem 2 (stochastic approximation theorem). Let 	 be a closed, bounded,
and convex subset of Rq. Let � : Rq → R be a twice continuously differentiable
function with a finite lower bound. Let g ≡ (∇�)T . Let H ≡ ∇2�.

• Assume x̃θ has Radon-Nikodým density pe(·|θ) : Rd → [0,∞) with respect
to a sigma-finite measure ν for each θ ∈ 	.

• Assume a positive number xmax exists such that for all θ ∈ 	, the random
vector x̃θ with density pe(·|θ) satisfies |x̃θ| < xmax with probability one.

• Let γ0, γ1, γ2, . . . be a sequence of positive real numbers such that

∞∑
t=0

γ 2
t < ∞ (5.1)

and

∞∑
t=0

γt = ∞. (5.2)

• Let dt : Rd × Rq → Rq be a piecewise continuous function on a finite par-
tition of Rd × Rq for all t ∈ N. When it exists, let

d̄t (θ) =
∫

dt (x, θ)pe(x|θ)dν(x).

• Let θ̃(0) be a q-dimensional random vector. Let θ̃(1), θ̃(2), . . . be a sequence
of q-dimensional random vectors defined such that for t = 0, 1, 2, . . .,

θ̃(t + 1) = θ̃(t) + γt d̃t, (5.3)

where d̃t ≡ dt (x̃θ (t), θ̃(t)) such that |d̃t | is less than some finite number for
t = 0, 1, 2, . . ., and the distribution of x̃θ (t) is specified by the conditional
density pe(·|θ̃(t)).

• Assume there exists a positive number K such that for all θ ∈ 	,

d̄t (θ)Tg(θ) ≤ −K|g(θ)|2. (5.4)

If there exists a positive integer T such that θ̃(t) ∈ 	 for all t ≥ T with proba-
bility one, then θ̃(1), θ̃(2), . . . converges with probability one to the set of critical
points of � contained in 	.
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Proof. Let �̃t ≡ �(θ̃(t)) with realization �t ≡ �(θ(t)). Let g̃t ≡ g(θ̃(t)) with re-
alization gt ≡ g(θ(t)). Let H̃t ≡ H(θ̃(t)) with realization Ht ≡ H(θ(t)).

Step 1: Expand � using a second-order mean value expansion. Expand � about
θ̃(t) and evaluate at θ̃(t + 1) using the mean value theorem to obtain

�̃t+1 = �̃t + g̃T
t

(
θ̃(t + 1) − θ̃(t)

) + γ 2
t R̃t (5.5)

with

R̃t ≡ (1/2)d̃T
t H(ζ̃t )d̃t, (5.6)

where the random variable ζ̃t can be defined as a point on the chord
connecting θ̃(t) and θ̃(t + 1). Substituting the relation

γtd̃t = θ̃(t + 1) − θ̃(t)

into equation 5.5 gives

�̃t+1 = �̃t + γt g̃T
t d̃t + γ 2

t R̃t . (5.7)

Step 2: Identify conditions required for the remainder term of the expansion to be
bounded. Since, by assumption, {θ̃(t)} is a bounded stochastic sequence
and H is continuous, this implies that the stochastic sequence {H(ζ̃t )}
is bounded. In addition, by assumption, {d̃t} is a bounded stochastic
sequence. This implies there exists a number Rmax such that for all
t = 0, 1, 2, . . .,

|R̃t | < Rmax, (5.8)

with probability one.
Step 3: Show the expected value of objective function decreases. Taking the

conditional expectation of both sides of equation 5.7 with respect to
the conditional density pe and evaluating at θ(t) and γt yields

E
{
�̃t+1|θ(t)

} = �t + γtgT
t d̄t + γ 2

t E{R̃t |θ(t)}. (5.9)

Substituting the assumption d̄t (θ)Tg(θ) ≤ −K|g(θ)|2 and the conclu-
sion of step 2 that |R̃t | < Rmax with probability one into equation 5.7
gives

E
{
�̃t+1|θ(t)

} ≤ �t − γtK|gt |2 + γ 2
t Rmax. (5.10)

Step 4: Show a subsequence of {|g̃t |2} converges to zero wp1. Since � has a
lower bound, K is a finite positive number, and equation 5.1 holds by
assumption, then the almost supermartingale lemma can be applied
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to equation 5.10 on the set where {θ̃(t)} and {d̃t} are bounded with
probability one to obtain the conclusion that

∞∑
t=0

γt
∣∣g̃t

∣∣2
< ∞ (5.11)

with probability one.
For some positive integer T, let

ã∗
T ≡ inf

{∣∣g̃T
∣∣2

,
∣∣g̃T+1

∣∣2
, . . .

}
.

The sequence ã∗
T , ã∗

T+1, . . . is nonincreasing with probability one and
bounded from below by zero, which implies that this sequence is con-
vergent with probability one to a random variable ã∗ (see theorem
5.1.1(vii); Rosenlicht, 1968, p. 50).

Assume that ã∗ is positive and not equal to zero, from equation 5.2,

∞∑
t=1

γt ãt ≥ ã∗
∞∑

t=T

γt = ∞,

which contradicts equation 5.11. Thus, the sequence ã∗
T , ã∗

T+1, . . . is
convergent with probability one to zero. Equivalently a subsequence
of {|g̃t |2} is convergent with probability one to zero.

Step 5: Show that the stochastic sequence {θ̃(t)} converges to a random vari-
able wp1. From conclusion (1) of the almost supermartingale lemma,
the stochastic sequence of �(θ̃(1)), �(θ̃(2)), . . . converges to some un-
known random variable, which will be denoted as �̃∗ with probabil-
ity one. Since � is continuous, this is equivalent to the assertion that
θ̃(1), θ̃(2), . . . converges with probability one to some unknown ran-
dom variable, which will be denoted as Ṽ∗ such that �(Ṽ∗) = �̃∗ with
probability one. By the assumption that with probability one, every
trajectory θ̃(1), θ̃(2), . . . is confined to the closed, bounded, and con-
vex set 	, it follows that Ṽ∗ ∈ 	 with probability one.

Step 6: Show the stochastic sequence {|g̃t |2} converges to zero wp1: Since g is a
continuous function, it follows that |g(θ̃(1))|2, |g(θ̃(2))|2, . . . converges
with probability one to |g(Ṽ∗)|2. This is equivalent to the statement
that every subsequence of {|g(θ̃(t))|2} converges to |g(Ṽ∗)|2 with prob-
ability one. That is, for every possible sequence of positive integers
t1, t2, . . . the stochastic subsequence |g(θ̃(t1)|2, |g(θ̃(t2)|2, . . . converges
with probability one to |g(Ṽ∗)|2.

From step 4, there exists a sequence of positive integers, k1, k2, . . .

such that the stochastic subsequence |g(θ̃(k1)|2, |g(θ̃(k2)|2, . . . con-
verges with probability one to zero. Thus, to avoid a contradiction,
every subsequence of {|g(θ̃(t))|2} converges to a random variable
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|g(Ṽ∗)|2 with probability one and additionally with probability one,
|g(Ṽ∗)|2 = 0—or equivalently, {|g(θ̃(t))|2} converges to 0 with proba-
bility one.

Since |g|2 is a continuous function and the assumption that Ṽ∗ ∈
	 with probability one, it follows that θ̃(1), θ̃(2), . . . converges with
probability one to

{Ṽ∗ ∈ 	 : |g(Ṽ∗)|2 = 0}.

That is, θ̃(1), θ̃(2), . . . converges with probability one to the set of crit-
ical points of � in 	. �
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