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Alternative Talk Title:
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How to Determine when your Model

is Hallucinating!



Definitions

• Correctly Specified Model:

– A model is a set of probability distributions.

3



Definitions

• Correctly Specified Model:

– A model is a set of probability distributions.

– A correctly specified model contains the 
data-generating distribution.

4



Definitions

• Correctly Specified Model:

– A model is a set of probability distributions.

– A correctly specified model contains the 
data-generating distribution.

• Misspecified Model:
Model that is not correctly specified.

5



Definitions

• Correctly Specified Model:

– A model is a set of probability distributions.

– A correctly specified model contains the 
data-generating distribution.

• Misspecified Model:
Model that is not correctly specified.

• Model Fit (not Goodness-of-Fit): Magnitude
of residual error, prediction accuracy, etc.
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Model Fit is different from 
Model Specification
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Model Fit is different from 
Model Specification

• Model is misspecified in error term, yet

• Prediction/Residual Error depends on 
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Misspecification Detection
is Important for Mathematical Psychology

• Goal is to model biological/behavioral 
systems that have testable assumptions….
Need methods for testing!
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Misspecification Detection 
is Important for Mathematical Psychology

• Goal is to model biological/behavioral 
systems that have testable assumptions….
Need methods for testing!

• Interpretable Parameters Require
Correct Model Specification!
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Class of Probability Models
• Independent and Identically Distributed

• Smooth Probability Models 
(e.g., General Linear Models; Markov Fields; Hierarchical 
Linear Models; nonlinear regression)

• Local Identifiability (one or more strict local minimizers)

• Expectations Exist
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MLEs (Maximum Likelihood Estimates)
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  ; :f x θ θGiven probability model: 

• MLE of Parameters make observed data most likely

• MLE is random vector converging to local minimizer of 

expected value of negative normalized log-likelihood function

• MLE random variable has covariance matrix which can be 

estimated in 2 ways. 
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Method 2 (Using 1st derivatives):
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Two Different Methods for Estimating 
Covariance Matrix of MLE



Information Matrix Equality 
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Information Matrix Equality
and The Big Idea
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* *: Correctly Specified Model IM Equality A B

* *: Misspecified Model Contrapositive A B

Big Idea (White, 1982):

Detect Model Misspecification by testing 

* *:oH A B



Full Information Matrix Test
(White, 1982, 1994)

• Previous Logistic Regression Simulation Studies: 
Poor Type 1 and Type 2 error rates 
(e.g., Aparicio & Villanua, 2001; Orme, 1990; Stomberg & White, 2000) 

• Possible Explanation:
– DF = K(K+1)/2       where    K=number of parameters
– Null hypothesis false if only one element is different
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Generalized Information Matrix 
Test (GIMT) Hypothesis Function
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Golden, Henley, White, and Kashner (2013, 2016)



Generalized Information Matrix 
Test (GIMT) Hypothesis Function
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• Example 1:
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Generalized Information Matrix 
Test (GIMT) Hypothesis Function
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• Example 1:
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Generalized Information Matrix 
Test (GIMT) Hypothesis Function
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• Example 1:

 * *: ,o rH s A B 0

 * * * *if , then : ,o rH A B s A B 0

Golden, Henley, White, and Kashner (2013, 2016)

• Example 2:

• Virtually an infinite number of  “selection functions” can be

defined corresponding to a virtually infinite number of GIMTs!

   * *: det detoH A B

   * *: trace traceoH A B



Directional GIMTs (Golden et al., 2013, 2016)

• Adjusted Classical GIMT

• Fisher Spectra GIMT

• GAIC GIMT

• GAIC Ratio GIMT 
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Nondirectional GIMTs

• Classical White (1982) Full Information Matrix Test
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Nondirectional GIMTs

• Classical White (1982) Full Information Matrix Test

• Composite GAIC GIMT  (Golden et al., 2016)
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GIMT Selection Statistic Estimator

• The unobservable quantity

• A consistent estimator of        is given by:
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GIMT Hypothesis Test Theorem
(Golden, Henley, White, Kashner, 2013, 2016)

• If                               is true, then       is asymptotically
Gaussian with mean                     and variance            .

• If                               is false, then                  w.p.1.    
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• Step 1. Compute

• Step 2. If pobs < 0.05, reject Ho at 0.05 significance level;

Else do not reject Ho.
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• If                               is true, then       is asymptotically
Gaussian with mean                     and variance            .

• If                               is false, then                  w.p.1.    
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GIMT for testing                                at 0.05 significance level  

• Step 1. Compute

• Step 2. If pobs < 0.05, reject Ho; Else do not reject Ho.
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GIMT Hypothesis Test Theorem
(Golden, Henley, White, Kashner, 2013, 2016)



Estimating the Variance of the 
GIMT Selection Statistic  

• If                               is true, then       is asymptotically
Gaussian with mean                     and variance            .

• Method 1 (Golden et al., 2013, 2016):
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The variance for either a scalar-valued or vector-valued selection

statistic can be computed using an analytic formula which uses

the first, second, and third derivatives of the log-likelihood function.
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Estimating the Variance of the 
GIMT Selection Statistic  

• If                               is true, then       is asymptotically
Gaussian with mean                     and variance          .

• Method 1 (Golden et al, 2013, 2016):

• Method 2:
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The variance for either a scalar-valued or vector-valued selection

statistic can be computed using a Nonparametric (resampling)

Bootstrap procedure.

The variance for either a scalar-valued or vector-valued selection

statistic can be computed using an analytic formula which uses

the first, second, and third derivatives of the log-likelihood function.



Nonparametric Bootstrap Resampling Method for
Estimating Selection Statistic       Variance
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Parametric Bootstrap 
Simulation Studies

• Objective:
Evaluate Quality of Derived Statistical Tests
by Generating Data from Known 
Data Generating Process
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Parametric Bootstrap Simulation Studies

Generate M 
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Fitted Model
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GIMT Simulation Setup
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• Data generated by randomly sampling x1 on interval [-1,+1]

• Correctly Specified Logistic Regression Model:

• Misspecified Logistic Regression Model:
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GIMT Level Performance
(Golden, Henley, White, and Kashner, 2016)
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Analytic 3rd Derivative Formula Size-Power Results
(Golden, Henley, White, Kashner, 2016)
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Lancaster-Chesher Formula Size-Power Results
(Golden, Henley, White, and Kashner, 2016)



Conclusions

• Introduced a unified theory for specification 
testing applicable to most smooth parametric 
probability models
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Conclusions

• Introduced a unified theory for specification 
testing applicable to most smooth parametric 
probability models

• GIMTs developed within this theory show good 
level and power performance

• Many types of model misspecification are 
possible --- Desirable to have a large variety of 
tests for assessing and identifying problems
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Publications

Book Chapter:
New Directions in Information Matrix 
Testing: Eigenspectrum Tests (2013) 
Richard M. Golden, Steven S. Henley, 
Halbert White, T. Michael Kashner

Or alternatively go to the blog:
www.learningmachines101.com

And visit link at end of Episode LM101-058
where you can find a copy of this presentation

Download Open Access Econometrics Article from:

http://www.mdpi.com/2225-1146/4/4/46

http://www.learningmachines101.com/
http://www.mdpi.com/2225-1146/4/4/46
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